Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
a__tail(X) → tail(X)
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
a__tail(X) → tail(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
a__tail(X) → tail(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__tail(cons(X, XS)) → mark(XS)
mark(nil) → nil
a__tail(X) → tail(X)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(a__head(x1)) = 2·x1
POL(a__incr(x1)) = 2·x1
POL(a__nats) = 0
POL(a__odds) = 0
POL(a__pairs) = 0
POL(a__tail(x1)) = 2 + x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(head(x1)) = 2·x1
POL(incr(x1)) = 2·x1
POL(mark(x1)) = 2·x1
POL(nats) = 0
POL(nil) = 2
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 1 + x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(tail(X)) → a__tail(mark(X))
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(a__head(x1)) = x1
POL(a__incr(x1)) = x1
POL(a__nats) = 0
POL(a__odds) = 0
POL(a__pairs) = 0
POL(a__tail(x1)) = 1 + 2·x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(head(x1)) = x1
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__head(cons(X, XS)) → mark(X)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(a__head(x1)) = 2 + x1
POL(a__incr(x1)) = x1
POL(a__nats) = 0
POL(a__odds) = 0
POL(a__pairs) = 0
POL(cons(x1, x2)) = 2·x1 + x2
POL(head(x1)) = 2 + x1
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
a__head(X) → head(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__head(X) → head(X)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(a__head(x1)) = 2 + 2·x1
POL(a__incr(x1)) = 2·x1
POL(a__nats) = 0
POL(a__odds) = 0
POL(a__pairs) = 0
POL(cons(x1, x2)) = 2·x1 + x2
POL(head(x1)) = 1 + 2·x1
POL(incr(x1)) = 2·x1
POL(mark(x1)) = 2·x1
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(head(X)) → a__head(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(head(X)) → a__head(mark(X))
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(a__head(x1)) = 2·x1
POL(a__incr(x1)) = 2·x1
POL(a__nats) = 0
POL(a__odds) = 0
POL(a__pairs) = 0
POL(cons(x1, x2)) = x1 + 2·x2
POL(head(x1)) = 1 + 2·x1
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__nats → nats
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__nats → nats
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(a__incr(x1)) = 2·x1
POL(a__nats) = 2
POL(a__odds) = 0
POL(a__pairs) = 0
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = 2·x1
POL(nats) = 1
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MARK(pairs) → A__PAIRS
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__ODDS → A__PAIRS
MARK(cons(X1, X2)) → MARK(X1)
MARK(nats) → A__NATS
MARK(odds) → A__ODDS
A__INCR(cons(X, XS)) → MARK(X)
A__ODDS → A__INCR(a__pairs)
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(pairs) → A__PAIRS
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__ODDS → A__PAIRS
MARK(cons(X1, X2)) → MARK(X1)
MARK(nats) → A__NATS
MARK(odds) → A__ODDS
A__INCR(cons(X, XS)) → MARK(X)
A__ODDS → A__INCR(a__pairs)
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__ODDS → A__INCR(a__pairs)
MARK(odds) → A__ODDS
A__INCR(cons(X, XS)) → MARK(X)
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(odds) → A__ODDS
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(A__INCR(x1)) = 1 + x1
POL(A__ODDS) = 2
POL(MARK(x1)) = 1 + 2·x1
POL(a__incr(x1)) = x1
POL(a__nats) = 0
POL(a__odds) = 1
POL(a__pairs) = 1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 0
POL(odds) = 1
POL(pairs) = 1
POL(s(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__INCR(cons(X, XS)) → MARK(X)
A__ODDS → A__INCR(a__pairs)
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__INCR(cons(X, XS)) → MARK(X)
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__INCR(cons(X, XS)) → MARK(X)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
a__pairs → pairs
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__odds → odds
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__INCR(cons(X, XS)) → MARK(X)
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
A__INCR(cons(X, XS)) → MARK(X)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__INCR(x1)) = x1
POL(MARK(x1)) = x1
POL(a__incr(x1)) = 1 + x1
POL(a__nats) = 1
POL(a__odds) = 1
POL(a__pairs) = 0
POL(cons(x1, x2)) = x1
POL(incr(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nats) = 1
POL(odds) = 1
POL(pairs) = 0
POL(s(x1)) = 1 + x1
The following usable rules [17] were oriented:
a__pairs → pairs
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__odds → odds
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__INCR(cons(X, XS)) → MARK(X)
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
mark(nats) → a__nats
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(incr(X)) → a__incr(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__pairs → pairs
a__odds → odds
a__incr(X) → incr(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.